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In this work we study the double exchange-Holstein model with an electron-phonon interaction � coupled to
magnetism. The analysis is performed combining a mean-field approximation for the double exchange inter-
action and the Lang-Firsov transformation for the electron-phonon interaction. Discontinuous magnetic tran-
sitions appear when the dependence of g with m is sufficiently large, resembling those experimentally observed
in manganites. We observe that the characteristic resistivity peak that arises near the critical temperature
appears for broad ranges of the system parameter values, unlike what occurs in a constant-� model.
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I. INTRODUCTION

Perovskite manganites La1−xAxMnO3 �A=Ca,Sr,Ba� have
been studied intensively since the discovery of the spectacu-
larly large dependence of their resistivity with the applied
magnetic field: a phenomenon called colossal magnetoresis-
tance �CMR�. This unusual high response to the application
of a magnetic field occurs mainly for temperatures near the
critical temperature Tc of a ferromagnetic-metallic �FM� to
paramagnetic-insulating �PI� transition.1 In this range of tem-
peratures, the curve of resistivity versus temperature exhibits
a characteristic pronounced peak. It was found that the
ferromagnetic-to-paramagnetic transition might be of first or
second order,2 depending on the composition of the material.

The connection between ferromagnetism and metallic be-
havior can be explained with the double exchange �DE�
model proposed by Zener.3 This model assumes a very large
Hund’s coupling between electrons and localized spins,
which causes a reduction in the effective electron hopping
when the ion spins are disordered.4 Thus, the model predicts
that the system is metallic in the ferromagnetic state and an
insulator in the paramagnetic one. However, the magnetore-
sistance effect that is obtained with this theory is very poor
in comparison with the experimental observations, suggest-
ing that the double exchange mechanism alone is not enough
to explain the properties of the manganites.5 Millis et al.5

proposed that a minimal model for the manganites must in-
clude a term describing a coupling between electrons and
lattice degrees of freedom. The effect of such interaction was
considered by Röder et al.6 and by Millis et al.7 In Ref. 6 the
authors showed that the electron-phonon �e-ph� interaction
gives a dependence of Tc with doping that is similar to the
one observed experimentally. In Ref. 7, it was found that the
e-ph coupling enhances the magnetoresistance effect and
provides a resistivity behavior that is in qualitative agree-
ment with the experimental observations. However, the re-
sistivity peak near Tc is obtained with this theory only if the
electron-phonon coupling � satisfies the condition 1.08��
�1.2. A similar result was obtained by Vergés et al.8 using
Monte Carlo simulations. The obtained phase diagram indi-

cates that for the case n=0.08, there is a FM to PI transition
if 1.3���1.6.

In a recent paper, Dagotto and co-workers9 studied the
resistivity of the DE model including e-ph interactions using
Monte Carlo computational techniques. In agreement with
the previously mentioned works, it was found that the maxi-
mum of resistivity is observed in the double exchange-
Holstein �DE-H� model if the coupling � is fine tuned around
some values that depend on electron density n. For instance,
for n=0.1, the maximum resistivity appears for values of �
in the range �1.3–1.6�, in agreement with the results of Ref.
8. The inclusion of disorder in the DE-H model was consid-
ered by Kumar and Majumdar in Ref. 10 and also in Ref. 9.
It was found that quenched disorder favors polaronic forma-
tion and the appearance of the resistivity peaks in the curve
��T�. However, it is not clear whether the magnetoresistance
effect induced by disorder reproduces the experimentally ob-
served resistive behavior in all their aspects.

In this work we propose an alternative modification of the
model. We study a DE-H with an electron-phonon coupling
� that depends on the magnetic ordering, instead of being
constant as it is considered in the usual model. The variation
of � with disorder has been a long-standing problem. Both
theoretical and experimental results show that � may have
important changes induced by disorder.11–13 It is therefore of
great interest to investigate how the magnetic transitions are
affected by the variations in the e-ph coupling. The work is
organized as follows. In Sec. II, after performing a Lang-
Firsov transformation of the Hamiltonian, we construct a free
energy for the system following Kubo-Ohata14 theory. In
Sec. III we discuss the dependence of the electron-phonon
coupling with the magnetization. In Sec. IV we shall con-
sider the effect of this dependence on the magnetic transi-
tions and the resistivity. In Sec. V we summarize our results.

II. HAMILTONIAN MODEL

The Hamiltonian of the double exchange-Holstein is
given by

H = HZ + HH,
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HZ = − �
ij

tij�ci�
† cj� + H.c.� − JH�

i

�i · Si,

HH = − ��
i

ci�
† ci��bi

† + bi� + ��
i
�bi

†bi +
1

2
� , �1�

where tij is the electron hopping between the sites i and j, ci�
†

is the creation operator for the itinerant electrons, JH is the
Hund’s coupling, �i is the spin of the itinerant electrons, Si is
the spin of the Mn ions, � is the electron-phonon coupling,
and bi

† are the phonon creation operators. Here we consider
S=3 /2, which is the total spin of the three t2g electrons of the
Mn+4 ions. To study this Hamiltonian, we assume the usually
considered regime JH / t→�. It has been shown by various
authors4,14,15 that in this limit HZ reduces to the DE Hamil-
tonian,

HDE = − �
ij

tij�ij�ci�
† cj� + H.c.� , �2�

where

�ij = � ST
ij + 1

2

2S + 1
� , �3�

ST
ij being the total spin of the subsystem formed by the ions at

sites i and j and the electron, i.e., S0
ij = �Si+S j +�i�.4,14,15 The

value of �ij must be obtained averaging over all the states of
ST

ij. To calculate different averages, we follow the mean-field
approach of Kubo and Ohata and introduce an effective field
�=heff /T that tends to order the ion spins.14,16 The magneti-
zation is obtained from

m��� = z−1 �
l=−S

S

�l/S�exp��l/S� , �4�

z��� = �
l=−S

S

exp��l/S� . �5�

Since in the present model � depends on the magnetiza-
tion, it must be also a function of the field parameter �. The
value of �ij is also obtained averaging over the states of the
dimer.16 Substituting �ij by it averaged value �, the Hamil-
tonian �1� becomes

H = − �����
ij

tij�ci�
† cj� + H.c.� − �����

i

ci�
† ci��bi

† + bi�

+ ��
i
�bi

†bi +
1

2
� . �6�

To treat the phonon-dependent part of Eq. �6� we use the

Lang-Firsov transformation H̃=eSHe−S, where S=g�ni�ai
−ai

†� and g=� /�. With this transformation, the Hamiltonian
takes the form

H̃ = − ����e−g2�
ij

tij�ci�
† cj�e−g�bj

†−bi
†�eg�bj−bi� + H.c.�

− �g2�
i

ni − 2�g2�
i

ni↑ni↓ + ��
i
�bi

†bi +
1

2
� , �7�

where ni� are the number operators for the electrons and ni
=ni↑+ni↓. We approximate the wave function of the system
as a tensorial product of waves function for the electrons and
phonons �		= �		e � �	0	ph. Considering that �	0	ph is the
vacuum state and averaging over this state, the Hamiltonian
takes the form

H̃ = − ����e−g2����
ij

tij�ci�
† cj� + H.c.�

− �g2����
i

ni − 2�g2����
i

ni↑ni↓. �8�

We note that the Lang-Firsov transformation introduces a
Hubbard-type attractive interaction which can promote the
formation of bipolarons.17,18 However, we shall consider the
system is in the adiabatic limit �→0 and thus we shall omit
the last two terms of the above equation. From Eq. �8� we
can obtain a free energy F=E−TS for the system. The free
energy of the electrons are given by


e��� = −
1

2�
�
k,�

ln
1 + e�
�−
k����� , �9�

where 
k=����e−g2���
0k, and 
0k stands by the energy levels
of the bare band. To obtain the free energy F of the whole
system, we follow Kubo and Ohata,14 adding to 
e an en-
tropy term corresponding to the spin ions. The free energy is
thus given by

F = 
e��� − NT
ln z��� − �m���� . �10�

In order to determine the mean-field solutions at given
temperature and doping level, we minimize F with respect to
the variational parameter �. We still need, however, a depen-
dence of g with �, or equivalently, a dependence of g with m.

III. COUPLING BETWEEN g AND THE
MAGNETIZATION

To justify the use of an electron-phonon parameter that
varies with magnetization, we examine now the calculation
of the electron-phonon coupling. With this purpose, we can
expand the interaction between the electron and the ions Vei
in the form

Vei = �
ij

Vei�r j − Ri
0� − �

ij

Qi� jVei�r j − Ri
0� + ¯ , �11�

where Qi measures the separation of the ion position Ri from
its equilibrium value Ri

0, i.e., Qi=Ri−Ri
0. The first term in

Eq. �11� represents the potential that interacts with the elec-
tron in the absence of lattice deformation. Then, the informa-
tion concerning the electron-phonon interaction is contained
in the second term.19 We can separate the interaction electron
ion in the form Vei=Vs�+Vel, where Vs� corresponds to the
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Hund’s coupling and Vel includes all other possible electron-
ion interactions. Supposing that the position dependence of
Vs� is of the form Vs�=Vs��r j −Ri��−JH� ·Si�, the second
term in the expansion �11� may be put as

Vei2 = − �
ij

Qi� j
Vel�r j − Ri
0� − JH� · SiV�S�r j − Ri

0�� .

�12�

From the above expression, it becomes clear that Hund’s
interaction can introduce large changes in the interaction
electron phonon, principally when JH is the strong-coupling
regime. To obtain a relationship involving m and g, we shall
assume that the form of Vel�r j −Ri

0� and V�S�r j −Ri
0� are simi-

lar. In the Appendix, we show that this approximation is
adequate under certain conditions. Using this simplification
we can write Vel�r j −Ri

0�=�V�S�r j −Ri
0�, where � is a con-

stant. Inserting this equality in Eq. �12�, we obtain that

Vei2 = − �1 − �JH��i · Si	��
ij


Qi� jV�S�r j − Ri
0�� , �13�

where JH�� ·Si	 is the spatial average of the Hund’s interac-
tion. The interaction electron phonon takes the usual form, if
we except the factor �1−�JH�� ·Si	�. The usual electron-
phonon interaction that does not depend on the magnetiza-
tion is recovered when JH=0. In order to obtain the approxi-
mate dependence of g with m, we again follow the method
used in Refs. 4 and 14 and consider a dimer of two ions with
one itinerant electron. If we suppose that initially the elec-
tron is at the ion i=1, in virtue of the strong Hund’s coupling
the spin is aligned with the spin of this ion. When the elec-
tron jumps to the site i=2, it will interact with the spin S2. In
general �1 and S2 will not be aligned. To obtain the value of
JH�� ·Si	, we average JH��1 ·S2	 over all the states of the
total spin ST=�+S1+S2 in the presence of the field �. Due to
the fact that � is aligned with S1, these two spins can be

considered as a unique spin with module S̄=S+ 1
2 . Since S

=3 /2 and �=1 /2, �� ·S2	= �S1 ·S2	 /4. To calculate this aver-
age, we use the identity S1 ·S2= 1

2 �ST
2 −S1

2−S2
2�. Then, the av-

erage is explicitly obtained from

��1 · S2	 =
�ST=1/2

S̄1+S2 �M=−ST

ST �SM�ST
2 − S1

2 − S2
2�SM	eM�

8�ST=1/2
S̄1+S2 �M=−ST

ST eM�
,

�14�

where �SM��ST
2 −S1

2−S2
2��SM	= 
ST�ST+1�− S̄2�S̄2+1�−S1�S1

+1��, with S̄1=2 and S2=3 /2. Since m and �� ·Si	 are func-
tions of �, we can obtain the relationship between these
quantities. This dependence is shown in Fig. 1, and it can be
accurately approximated as �� ·Si	= 1

2Sm1.8. �� ·Si	 takes its
maximum value of 1

2S in the fully polarized state m=1, when
� and Si are aligned, and becomes zero in the disordered
state m=0. Then, from Eq. �13�, the dependence of the
electron-phonon coupling with m can be expressed as

g = g0�1 − �m1.8� , �15�

where � is a constant and g0 is the value of the e-ph coupling
in the absence of magnetization. From this expression, � can

be expressed as �= �g0−gm=1� /g0, i.e., is the variation of g
between the paramagnetic state �m=0� and the fully polar-
ized state �m=1� relative to g0. We notice that in previous
works,7 the notion of an effective e-ph coupling that changes
with T was already employed. However, the variations of g
considered here are not only effective but real ones. As we
shall show later, the real variations of g introduce important
modifications in the behavior of the system.

IV. NUMERICAL RESULTS

The numerical solutions are obtained minimizing the free
energy F �18� subject to the conditions �4� and �15�. In Fig.
2 we show the magnetization as a function of T for �=0.4, a
doping level x=1− �ni	=0.25, and different values of g0.
Here a square density of state �DOS� bare band of bandwidth
D=12t was assumed. In general, the effect of the e-ph cou-
pling is to reduce the magnetic critical temperature for either
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1.00.80.60.40.0 0.2

��< .S
i
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m

FIG. 1. Dependence of �� ·Si	 with the magnetization. The con-
tinuous line represents the values obtained with Eqs. �4� and �14�.
The dashed line corresponds to the approximate expression �� ·Si	
=3 /4m1.8.
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FIG. 2. Magnetization as a function of the temperature for g0

=2 and �=0.1,0.2,0.3,0.4. Temperature is measured in units of t.
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of the cases, in which g is dependent or independent of m.
This occurs due to the narrowing band effect of the electron-
phonon coupling, which reduces the efficiency of the double
exchange mechanism. However, when g is m dependent, the
magnetic transition becomes discontinuous as long as � is
above a critical value �c that depends on the value of g0 �see
Fig. 3�. We notice that as � increases, both the critical tem-
perature and the value of m may increase. This is because
larger values of � reduces the value of g in the magnetic
state, increasing the bandwidth and favoring the DE mecha-
nism. On the other hand, when the value of � is increased,
the critical value of g0 for the occurrence of discontinuous
transitions decreases. The minimal value of g0 for the occur-
rence of first-order transitions goes to infinity as �→0, in-
dicating that there are no discontinuous transition when �
=0 �g independent of m� within our mean-field treatment. In
Fig. 4 we show the phase diagram in the �g0 ,�� space. The
labeled regions correspond to �I� continuous ferromagnetic
transitions, �II� discontinuous magnetic-magnetic transitions,
and �III� discontinuous ferromagnetic-paramagnetic transi-
tion. The three cases are depicted in Fig. 3. Figures 2 and 3
show that the magnetic transitions obtained with an m depen-
dent g compares well with the one obtained in experiments
when ��0 and g0 is strong. At this point, we remark that the
detailed form of the dependence of g on m does not affect
significantly the system behavior. If we employ a simple lin-
ear dependence of the form g=g0�1−�m�, the phase diagram
is nearly the same as those showed in Fig. 4; although there
are some changes in the critical temperatures. Although we
have not calculated the value of � from first principles, it is
worth mentioning that the first-order transitions appear for
any value of ��0, if g0 is sufficiently large. Experimentally,
it was found that the electron-phonon interaction may un-
dergo variations of order 150%.13 If we assume this level of
variations, the value of � may be taken between 0 and 0.6.

An important property of the manganites is the strong
dependence of their resistivity with the application of a mag-
netic field near Tc. In order to study if this effect appears in
the present model, we examine the dependence of the band-

width with an applied field. The average physical magneti-
zation in z direction is given by M =gs�BN�Sz	, where N is
the number of ions. Thus, the energy due to the magnetic
interactions is given by HM =Nhm, with h=gs�BSH. We then
added the term HM to the free energy �18� and obtained the
mean-field solutions. The variations of W are shown in Fig.
5. As it can be seen, when the transitions are discontinuous
��=0.4�, there is a strong dependence of the bandwidth with
H near Tc. Since W is proportional to conductivity, this
means that there is a large increment of the conductivity with
application of H. This effect is relatively weak when the
transition is smooth ��=0.1�.

In many works, it has been reported that the first-order
transitions in manganites are accompanied by phase separa-
tion. In order to analyze this possibility, we plotted the free
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FIG. 3. Magnetization as a function of the temperature for �
=0.4 and g0=1,1.5,2.

FIG. 4. Phase diagram of the DE-H model with g=g0�1
−�m1.8�. The labeled regions represent �I� continuous magnetic
transitions, �II� discontinuous F-F transitions, and �III� discontinu-
ous F-P transitions.
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FIG. 5. Percentual variation in the bandwidth with application
of magnetic field calculated as 
W�H�−W�0�� /W�H�, for g=2, �
=0,0.2, and h=0.02. W�H� and W�0� denote the bandwidths with
and without magnetic field.
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energy of the F and P solutions as a function of doping for
constant temperature. The tendency to phase separation is
established when the stability condition � �2F

�N2 �T�0 is not sat-
isfied. Each solution satisfies this condition separately; but at
the point at which the two free energies cross, the first tran-
sition takes place and the condition is not satisfied. We then
search for biphase solutions of the form F=N1F1�Ne1 /N1�
+N2F2�Ne2 /N2�, where Ni are the number of sites occupied
by phase i and Nei are the numbers of electrons in the volume
occupied by phase i. Thus, N1+N2=N and Ne1+Ne2=Ne, Ne
being the total number of conduction electrons. F1 and F2
are the free energies for each phase showed in Fig. 6. Defin-
ing a1=N1 /N, z1=Ne1 /Ne, and n=Ne /N, we can express the
free energy per site as

F�T,n�/N = z1F1�T,nz1/a1� + �1 − z1�F2�T,
n�1 − z1�

1 − a1
� .

�16�

We then obtained the volume fraction occupied by each
phase minimizing F with respect to z1 and a1, with the re-
striction that the density of electrons ni=Ne1 /N1 must range
between 0 and 1 in each phase. The volume fraction occu-
pied by each phase is shown in Fig. 7 from which we can see
that phase separation takes place around the critical condi-
tions for the first-order transitions.

As mentioned previously, the origin of the resistivity
maximum that appears near the critical temperature is still
not well understood. As already mentioned, this peak is ob-
tained in the DE-H model,7–9 when the electron coupling �
takes values in a relatively narrow range. The calculations of
the resistivity in these previous works show that � decreases
monotonically with T if ��1.2. On the other hand, if �
�1.6, the resistivity rapidly increases with 1 /T. This last
behavior is probably due to the formation of polarons, whose
resistivity exhibit such a dependence with T. Although the
spin scattering could contribute to develop a maximum at Tc,

the resistivity of the polarons increases so rapidly that the
peak is not observed. In order to estimate the variation in the
resistivity due to polaron formation, we shall use the expres-
sion for �pol in the strong-coupling adiabatic limit �� / t
→0�,

�pol�T� = AT exp� 
a

kBT
� , �17�

where 
a

p /2 is the activation energy1 and 
p=g2� is the
polaron binding energy. From the Kubo’s formula for resis-
tivity, it follows20 that ��1 / t2. Then, we can write A
�1 /W2, where A is the parameter appearing in Eq. �17�. In
various works it was found that this expression agrees very
well with the resistivity in manganites in the region
T�Tc,

21–23 revealing the presence of small polarons in the
paramagnetic phase.24 It is worth mentioning that in prin-
ciple it is difficult to differentiate the polaronic resistivity
from the resistivity of an ordinary semiconductor, which has
a similar dependence to Eq. �17� �without the prefactor T�.
However, in Ref. 25 it has been shown that a band insulator
theory cannot explain the differences between the gap value
obtained from thermopower and the one obtained from resis-
tivity measurements. On the other hand, these differences
may be explained assuming polaronic interactions.

We studied the variation of �pol�T� using Eq. �17� with the
values of g and W obtained in the mean-field solutions. In
order to consider a realistic value of �, we included the third
term in Eq. �8� and minimized the free energy given by

F = 
e��� − NT
ln z��� − �m���� − �g2����
i

ni. �18�

In order to take realistic values of the parameters, we used
the estimations of the activation energy and phonon fre-
quency given in Ref. 23, 
a=0.08 eV and �=0.036 eV,
which gives g0=2. On the other hand, the bare bandwidth
has been estimated in Ref. 5 to be of order 2.5 ever. Since in
our model D=12t, this gives �
0.2t. In Fig. 8 the values of
log��pol� for g0=2, �=0.4, and �=0.2 �t=1� are shown.
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FIG. 6. Free energies per site over the bandwidth, for g=2, �
=0.2, and kBT=0.05. The solid line corresponds to the F state and
the dashed line to the P one. For these parameter values, phase
separation takes place for doping value ranges 0�x�0.3 and 0.7
�x�1.

0.0

0.2

0.4

0.6

1.0

0.8

0.0 0.2 0.8 1.00.4 0.6

a
1

x

FIG. 7. Volume fraction occupied by F �solid line� and P
�dashed line� regions, for g=2, �=0.2, and kBT=0.05.
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From this figure we can see that a peak accompanied by a
pronounced depletion of � is observed at T=Tc. This is
caused by a rapid reduction of g �in this case from g=2 in
the P state to g=1.2 in the F state�. As it can be seen from
Fig. 8, relatively small changes in g produce drastic changes
in �pol. Moderate variations of � or other system parameters
will not suppress the presence of these peaks. These appear
in region III of Fig. 4. Of course, we have not considered the
scattering of the electrons by the spins. We expect that this
effect will superpose to the polaronic ones and contribute to
increase the resistivity peak.

We note that the reduction of g allows a transition from
small polarons �large coupling� in the P state to large po-
larons �small coupling� in the F state. This transition has
been reported by a number of groups.26–28 The variation in
the resistivity for T�Tc also supports reduction in the
electron-phonon coupling in the ferromagnetic region. It has
been shown that resistivity in the ferromagnetic phase of the
manganites can be well described with a dependence of the
form �=�0+AT2+BT4.5, where the first term is a constant,
and the two last terms correspond to electron-electron �e-e�
interaction and electron-magnon scattering, respectively.21,29

A kind of transition between two polaronic regimes, as the
one found here, could explain the small influence of po-
laronic effects in the resistivity below Tc. We comment that
we do not attempt to describe accurately the resistivity of the
F phase with Eq. �17� because it is valid for the strong-
coupling regime. Thus, the resistivity of Fig. 8 describes the
transition between two phases with different e-ph coupling,
both in the strong-coupling case. It is worth mentioning that
the form of this curve is similar to the one obtained in
La0.85Sr0.15MnO3. At Tc=240 K, this compound experiments
a transition from a P insulator to an F insulator30 �see inset in
Fig. 40 of Ref. 1�.

A recent study of the quasiparticle excitation spectrum of
La0.77Ca0.23MnO3 using scanning tunneling microscopy by
Seiro et al.24 revealed that the spectra present a polaronic gap
in the F and P phases. However, the gap is reduced when the

system enters in the F phase. Since the polaronic gap mea-
sured in the experiment is of magnitude 
p, the dependence
of the gap with the temperature is compatible with the reduc-
tion in the e-ph interaction in the F state that is obtained in
the present model.

V. CONCLUSIONS

In this work, we study a DE-H model with an electron-
phonon interaction that depends on the magnetic ordering.
By a simple argument, in examining the calculation of the
electron-phonon coupling, we show that g is affected by the
magnetic interactions. This occurs principally when the
Hund’s coupling is strong, which is precisely the regime that
is considered to be relevant for the manganites. Introducing a
field parameter to control the magnetization and making
some assumptions about the spatial form of the electron-ion
interaction, we calculated a dependence of g with the mag-
netization m. When � ��dg /dm� is above a critical value
that depends on g0, the F-P transitions become discontinu-
ous. This is not only because the DE mechanism and the
polaron formation are affected mutually in an indirect form
but also because there is an interplay between these two
mechanisms. In the spin-disordered state, the electron-
phonon interaction is enhanced, favoring the appearance of
small polarons. In turn, the polaronic effect reduces the elec-
trons mobility decreasing the efficiency of the DE mecha-
nism. This highly nonlinear effect induces a sharp magnetic
transition. These first-order transitions may occur directly be-
tween the F and P states or between two F states. The last
case appears only in a narrow region of the parameter space
and probably will not be present in a more refined treatment
of the model than the mean-field approach considered here.
On the other hand, we can expect that a crossover from
smooth to sharp transitions will persist in region II if fluc-
tuations are included. The abrupt transitions of region III
�Fig. 4� have a shape that resembles the magnetic transitions
experimentally observed in the manganites. We estimated the
changes in the polaronic resistivity using the expression of
�pol in the adiabatic limit. A strong peak in the resistivity of
polaronic origin appears at the critical temperature when the
transitions are abrupt. This is very robust and appears in
region III of the phase diagram of Fig. 4. This allows to
explain the presence of the resistivity maximum in a series of
compounds, for which � and other properties may be differ-
ent. For some values of the parameters, the discontinuous
transitions are accompanied by a crossover from large po-
larons in the FM phase to small polarons in the PI phase, in
agreement with several experimental observations.26–28 In
summary, the obtained results show that the DE-H model
with an electron-phonon coupling that varies with the mag-
netization reproduces some properties of the manganites that
are still not well understood. It is not our intention to neglect
the importance of other factors, such as structural disorder or
phase separation in order to explain the manganites behavior,
but instead of proposing another mechanism that could be
important to complete the description of these systems.

FIG. 8. Logarithm of the polaronic part of the resistivity ob-
tained from the expression �pol�T�= BT

W2 exp� g2�
kBT �, using the values of

g and W obtained in the mean-field solutions for g0=2, �=0.2, and
�=0.4 �B is a constant�.
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APPENDIX

The spin-dependent part of the electron-ion interaction is
an exchange interaction given by

J�R� =� � �1�r��2�r��V�r� − r��2�r���1�r�drdr�.

�A1�

The orbital functions �i�r� are centered on different points
separated by a distance R. In order to study the dependence
of this interaction with R, we follow Campbell et al.31 and

assume that the e-e interaction is a screened potential of the
form V�r�−r�=A exp�−a�r−r���, r−r� being the distance be-
tween the electrons. We also assume that the functions �i are
of the form ��r�=C exp�−�r�. Here 1 /a is the screening
length and 1 /� is the localization length. We evaluated J for
different values of a, �, and R. We obtained that when a and
� are nearly equal, the variation of J�R� follows the variation
of V�R�. When a��, J�R� falls more rapidly than V�R�. In
the case a��, the opposite occurs. Then, the assumption
that J�R� has the same spatial dependence than V�R� is valid
for some particular physical conditions. On the other hand, it
is worth mentioning that the overall results do not depend
strongly on the functional dependence of g with m. Thus, this
assumption was performed to allow an analytical calculation
but does not introduce results which disappear if other de-
pendence is adopted.
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